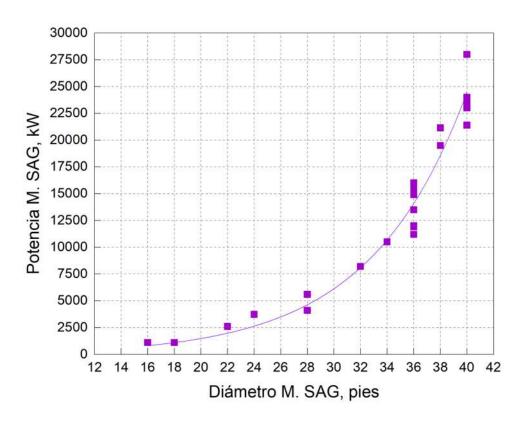


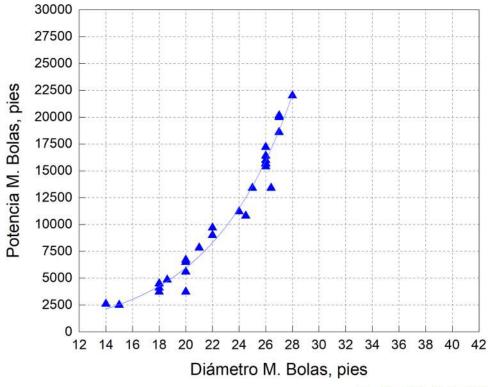
WEBINAR DE CONMINUCIÓN

Una Revisión a Avances en Molienda SAG

Luis Magne

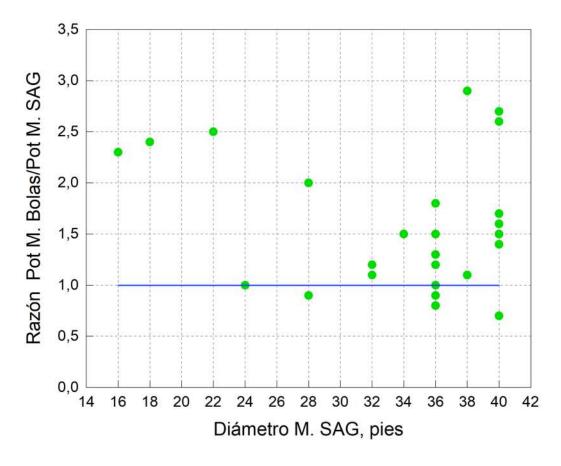
Con el gentil auspicio de: MULYCOP





EVOLUCIÓN DE MOLINOS EN PLANTA MOLIENDA SAG

Diámetro y Potencia Instalada en Chile y Perú



EVOLUCIÓN DE MOLINOS SAG Y DE BOLAS

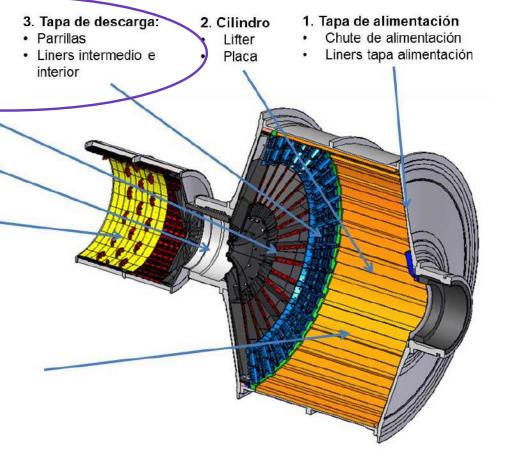
Diámetro y Potencia Instalada en Chile y Perú

MOLINOS SAG

Principales Variables de Diseño y Operacional

- 4. Tapa de descarga:
- Pulp lifters
- · Cono descarga

5. Trunnion:


· Trunnion liner

6. Trommel y/o Harnero:

- · Tamaño de slot
- Área libre total
- Dams
- · Deflector de pulpa (trommel)

7. Cámara de molienda:

- Nivel de llenado de bolas
- · Nivel de llenado de carga
- Tamaño de bola de recarga
- · Granulometría de alimentación
- · Concentración de sólidos

WEBINAR DE CONMINUCIÓN

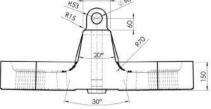
Una Revisión a Avances en Molienda SAG

Procesos en Tapa de Descarga

Con el gentil auspicio de: MULYCOP

Parrilla Interna

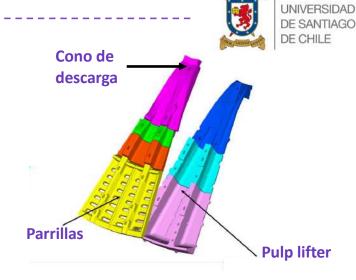
Parámetros de la parrilla:Área libre: Capacidad de

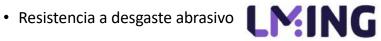

evacuación de pulpa
• Tamaño de slot: Pebbles y T₈₀

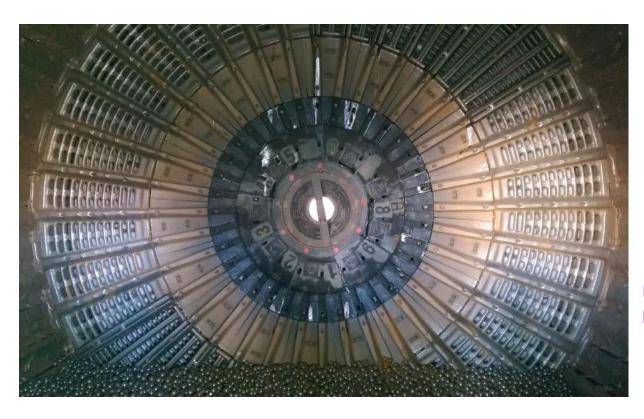
• Diseño de slot

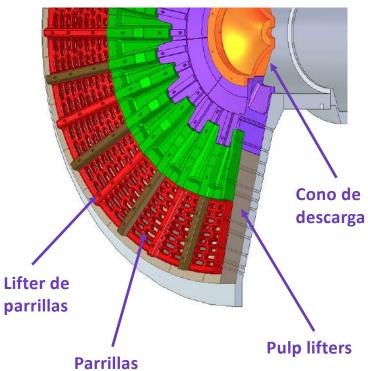
• Largo de parrilla: Capacidad de evacuación y retorno de pulpa

 Diseño de lifter de parrilla: Impacto de bolas en parrilla y cilindro

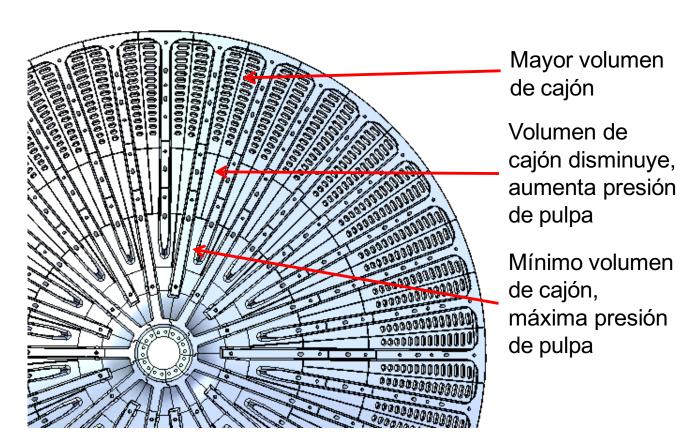

· Resistencia estructural


Pulp Lifter y Cono de Descarga


Parámetros de pulp lifter y cono de descarga:


- Volumen de cajones: Capacidad de evacuación de pulpa
- Geometría de cajones: Estrangulación de carga
- Geometría de cono de descarga: Estrangulación de pulpa (en pulp lifter) y direccionamiento de la pulpa a trunnion

Conjunto Tapa de Descarga



Conjunto Tapa de Descarga: Vista Interna

Conceptualización de Procesos en Tapa de Descarga

Flow Back:

Flujo de pulpa que pasa a través de la parrilla, se acumula en los pulp lifters, y que al girar el molino retorna al interior del molino a través de la parrilla.

- Diseño de la parrilla
 - Área libre
 - o Tamaño de slot
 - Largo de la parrilla
- Diseño de los pulp lifters

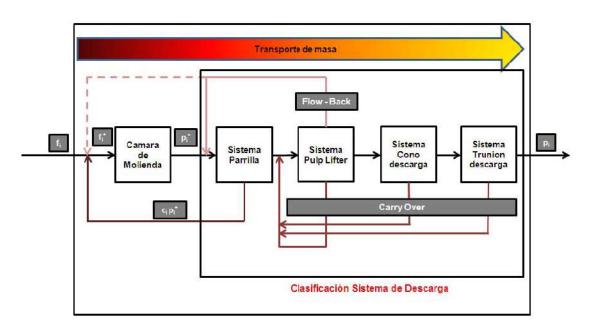
Carry Over:

Masa de pulpa que estando en los pulp lifters o el trunnion no logra salir del molino y permanece o retorna al pulp lifter:

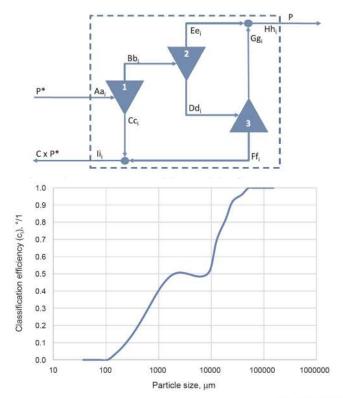
- Diseño de los pulp lifters
- Diseño y desgaste del cono de descarga (discharge cone)
- Diseño y desgaste del trunnion liner
- Diseño de deflector de pulpa

Conceptualización de Procesos en Tapa de Descarga

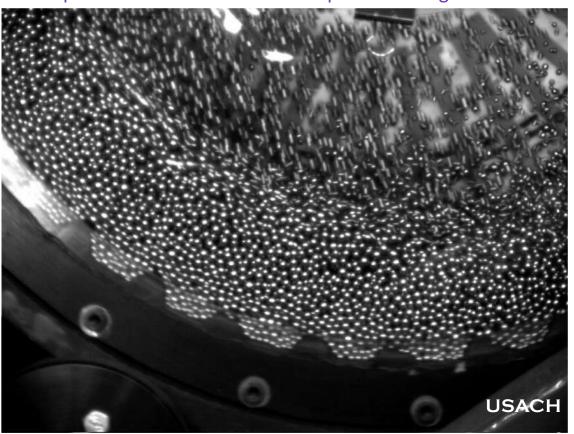
Material en evacuación



- La geometría de la parrilla y de pulp lifters debe:
 - Maximizar la evacuación de la pulpa que se encuentra en los pulp lifters
 - Minimizar el flow back y carry over
 - Minimizar el retorno de pulpa desde el trunnion hacia los pulp lifters
- Parámetros de diseño de la parrilla afectan directamente la eficiencia de evacuación:
 - Largo de la parrilla (flow back y carry over)
 - Área libre (flow back)
 - Tamaño de slot (flow back)



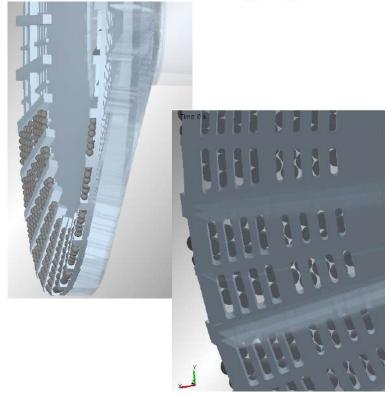
Conceptualización de Procesos en Tapa de Descarga


Becerra M, Magne L, Titichoca G, 2012

Becerra M, Magne L, 2020

Conceptualización de Procesos en Tapa de Descarga

Condición de carga "sobre la parrilla" sin lifter:


- La zona del riñón de carga cubre las parrillas
- La carga interna resbalaría sobre las parrillas aumentando su tasa de desgaste

Conceptualización de Procesos en Tapa de Descarga

Conceptualización de Procesos en Tapa de Descarga

Tapado y Cegado de Parrillas:

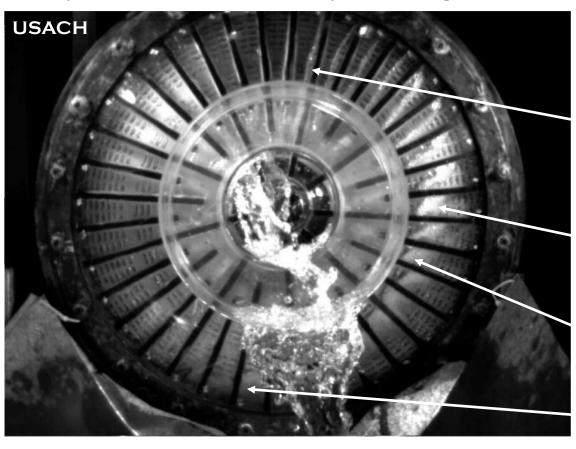
- Los levantadores de la parrilla "encajonan" carga sobre la parrilla
- La parrilla opera "tapada de bolas" cuando pasa bajo el riñón de la carga
- La pulpa debe atravesar el lecho de bolas antes de llegar a la parrilla
- El cegado (o taponado) de parrilla se produce cuando bolas o trozos de bolas se introducen en los slots
- No hay efecto aparente cuando el cegado de parrillas llega hasta 20 a 30% del área libre
- Sobre 40% del área libre cegada la capacidad de evacuación disminuye
- Los aumentos de tamaño de slot no siempre aumentan el flujo de pebbles

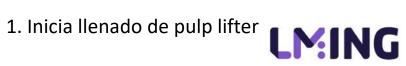
Conceptualización de Procesos en Tapa de Descarga

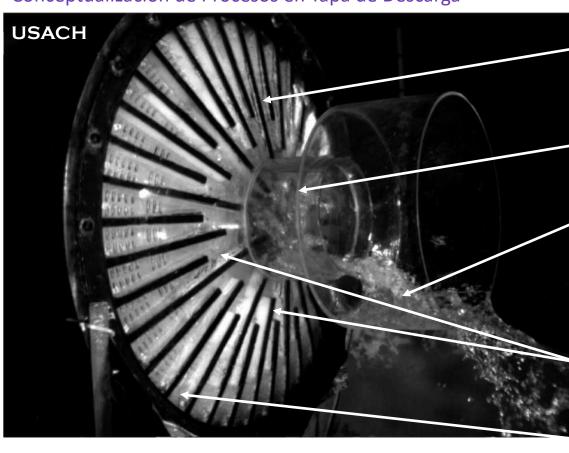
Ocurre por:

- Diseño del lifter de la parrilla
- Condiciones operacionales descontroladas
- Falla de materiales

Efectos del quiebre de parrillas:

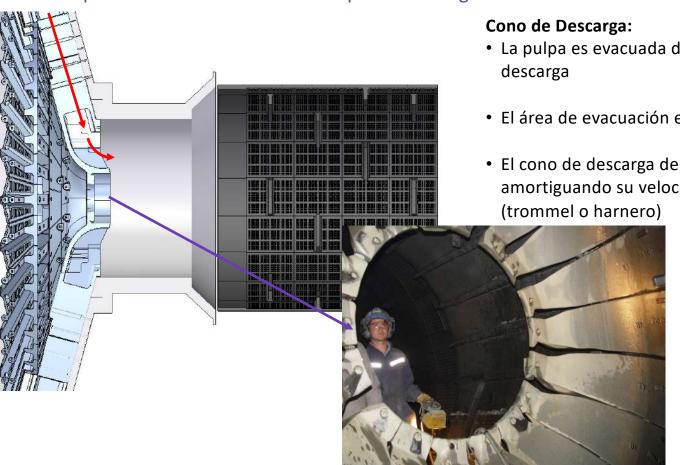

- Detención del molino (pérdida de productividad) para:
 - Reparación
 - o Cambio
- Pérdida del control del nivel de llenado de bolas
- Pérdida de carga balanceada de bolas


Conceptualización de Procesos en Tapa de Descarga


4. Descarga de pulp lifter

- 3. Inicia vaciado de pulp lifter hacia el interior del molino (flow back)
- 2. Máximo llenado de pulp lifter

Conceptualización de Procesos en Tapa de Descarga


- 2. Descarga de pulp lifter
- 4. Salida del cono de descarga y caída en trunnion
- 5. Caída de carga sobre trommel (en caso que exista)

- 3. Devolución de carga al pulp lifter (carry over)
- 1. Inicia llenado de pulp lifter LMING

Conceptualización de Procesos en Tapa de Descarga

- La pulpa es evacuada de los pulp lifters a través del cono de descarga
- El área de evacuación es limitado por el diámetro del trunnion
- El cono de descarga debe dirigir la pulpa sobre el trunnion, amortiguando su velocidad antes de caer sobre el clasificador (trommel o harnero)
 - Defectos de diseño y el desgaste excesivo del cono de descarga afectan la eficiencia de evacuación y la capacidad del molino

Conclusiones Generales

- La capacidad de tratamiento de un molino SAG no depende sólo de la eficiencia de molienda: también de la eficiencia de evacuación.
- El diseño de componentes de la tapa de descarga debe considerarse en conjunto: parrilla - pulp lifter cono de descarga.
- Modificaciones en el diseño de la parrilla (tamaño de slot y/o área libre) requieren del análisis del conjunto:
 - Cambios no adecuados en el diseño favorecen el flow back y/o el carry over.
- Diseño del lifter de parrilla puede favorecer:
 - Daños a la parrilla o
 - "Encajonamiento de carga" dificultando el paso de pulpa.
- La generación de pebbles depende de la oportunidad para salir por la parrilla antes que quede tapada por la carga.

WEBINAR DE CONMINUCIÓN

Una Revisión a Avances en Molienda SAG

Procesos en Tapa de Descarga

Con el gentil auspicio de: MULYCOP

