

AVENCES EN LA FLOTACIÓN DE MINERALES DE Cu CON ALTO CONSUMO DE CAL, Cu SOLUBLE Y PIRITA REFRACTARIA

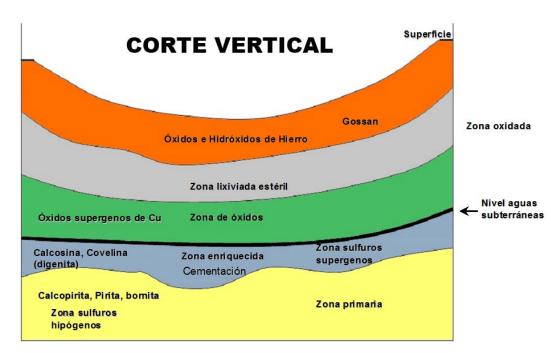
SERGIO CASTRO

Gerente General Castro Ingeniería Ltda.

"FLOTACIÓN DE MINERALES DE COBRE"

¿CÓMO LA GEOMETALURGIA IMPACTA LA FLOTACIÓN DE MINERALES DE Cu?

"FLOTACIÓN DE MINERALES DE COBRE"

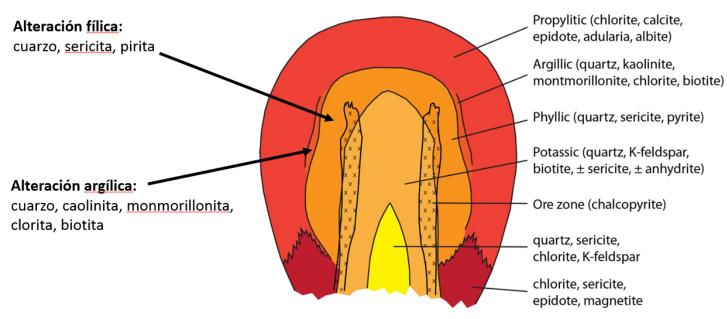


ZONAS DE UN YACIMIENTO DE COBRE PORFÍDICO

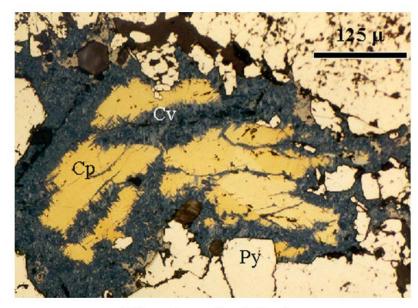
(Modelo estratiforme)

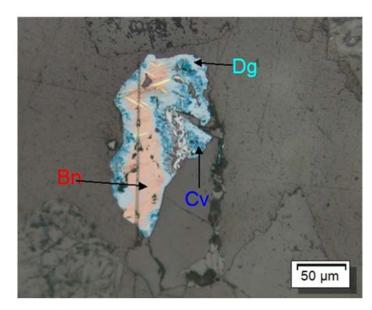
ALTERACIÓN HIDROTERMAL

"FLOTACIÓN DE MINERALES DE COBRE"



CORTE HORIZONTAL


"FLOTACIÓN DE MINERALES DE COBRE"



ALTERACIÓN HIDROTERMAL DE CALCOPIRITA Y BORNITA

Pátinas de <u>covelina</u> (Cv) sobre calcopirita (Cp) y pirita (Py).

Pátinas de <u>covelina</u> (Cv) y <u>digenita</u> (Dg) sobre bornita (Bn).

"FLOTACIÓN DE MINERALES DE COBRE"

¿CUÁLES SON LOS PROBLEMAS ACTUALES EN FLOTACIÓN DE Cu?

"FLOTACIÓN DE MINERALES DE COBRE"

SECTORES ALTERADOS

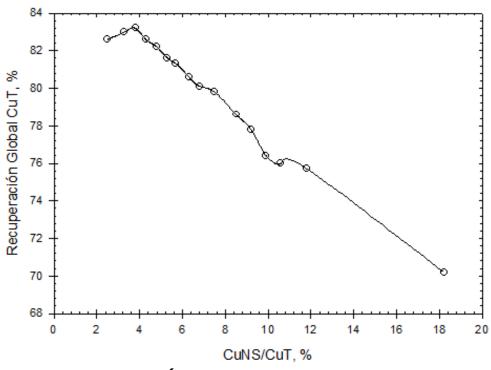
✓ Sectores con alto contenido de Cu soluble (5 - 25%%)

✓ Sectores con sulfuros de Cu en granos finamente diseminados

"FLOTACIÓN DE MINERALES DE COBRE"

OTROS PROBLEMAS

- √ Sectores con alto consumo de cal (>1Kg/t)
- ✓ Sectores con pirita refractaria a la depresión por cal
- ✓ Sectores con alto contenido de arcillas (montmorillonita, illita, etc.) (5-20%)

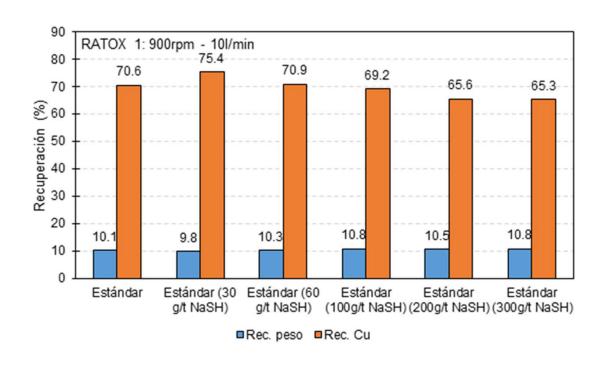

"FLOTACIÓN DE MINERALES DE COBRE"

¿CÓMO INCIDE EL Cu SOLUBLE SOBRE LA RECUPERACIÓN DE Cu?

¿CÓMO MEJORAR SU FLOTACIÓN?

- APLICAR SULFIDIZACIÓN CON NaHS
- USO DE COLECTORES NO TRADICIONALES:

(alkil hidroxamatos, mercaptobenzotriazol, etc.)


"FLOTACIÓN DE MINERALES DE COBRE"

"FLOTACIÓN DE MINERALES DE COBRE"

SECTORES CON ALTO CONSUMO DE CAL

- Corresponden a minerales ácidos (pH natural entre 4.5 y 5.5)
- > Contienen arcillas en cantidades significativas (montmorillonita, illita, etc.)
- > Pueden contener pirita en niveles altos (> 3%)
- Presentan problemas de espumación en flotación, y cambios de reología en otras etapas del proceso

"FLOTACIÓN DE MINERALES DE COBRE"

¿CÓMO ENFRENTAR ESTE PROBLEMA?

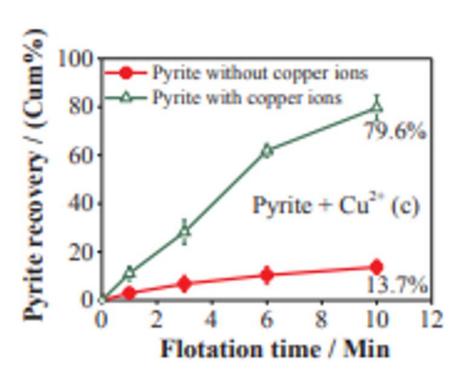
- ➤Romper el paradigma de: "operar el circuito rougher a pH constante (10.0-10.5) y cal variable", por una estrategia donde la cal sea constante y el pH más bajo.
- ➤ En esta línea, se puede bajar el pH del circuito <u>rougher</u> a valores de 9.0 9.5, buscando que el consumo de cal no supere 1 Kg/ton.

"FLOTACIÓN DE MINERALES DE COBRE"

SECTORES CON PIRITA REFRACTARIA A LA CAL

- √ Sectores con alto contenido de pirita (3 8%)
- √ Presencia de pirita activada por iones Cu(II)
- ✓ Granos de pirita recubiertos por pátinas de covelina o calcosina

"FLOTACIÓN DE MINERALES DE COBRE"



PIRITA ACTIVADA

La activación de pirita se favorece en ambiente

reductor

B

(Mu et al., 2014; 2018)

"FLOTACIÓN DE MINERALES DE COBRE"

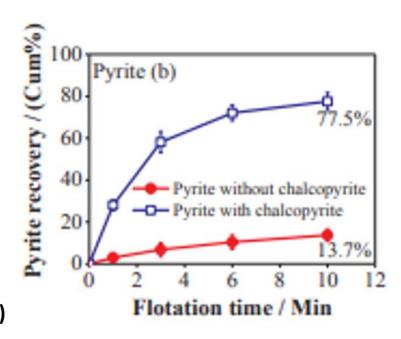
MECANISMOS DE ACTIVACIÓN DE PIRITA

SOBRE LA PIRITA SE FORMA UNA CAPA DE <u>Cus</u> y de azufre Elemental (Polisulfuro) hidrófobo, que la hace Resistente a la depresión por cal

(Bushell et al., 1952)

$$FeS_2 + Cu^{2+} \rightleftharpoons CuS + Fe^{2+} + S^0$$

Esta reacción requiere un potencial ORP reductor


"FLOTACIÓN DE MINERALES DE COBRE"

ACTIVACIÓN DE PIRITA POR CALCOPIRITA

El ambiente reductor y contacto con otras especies se favorece al interior de los molinos

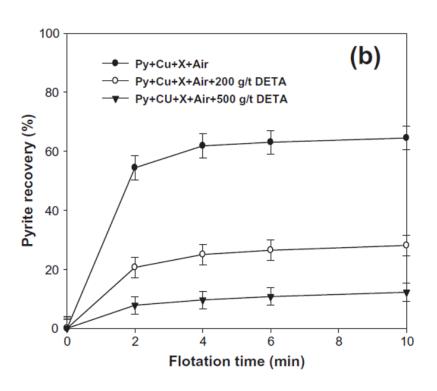
(Mu et al., 2014; 2018)

"FLOTACIÓN DE MINERALES DE COBRE"

¿COMO DEPRESAR PIRITA REFRACTARIA A LA CAL?

- USO DE AGENTES QUELANTES (DETA, <u>dietilen triamina</u>)

- USO DE BISULFITO DE SODIO


"FLOTACIÓN DE MINERALES DE COBRE"

USO DE AGENTES QUELANTES: DETA

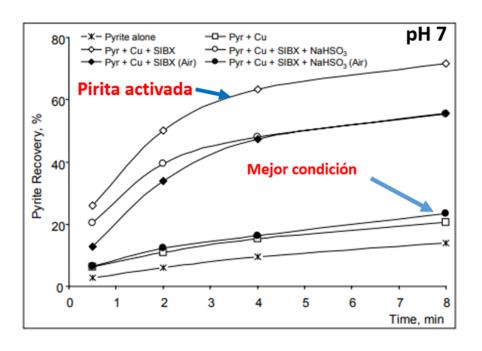
DETA: Diethylenetriamine

(<u>Agorhom</u> et al., 2015)

"FLOTACIÓN DE MINERALES DE COBRE"

CONDICIONES PARA DEPRESIÓN DE PIRITA ACTIVADA CON DETA

- La depresión de pirita se debe a la formación de complejos entre DETA y Cu(I)
- Mejores resultados se obtienen con aireación (pH 10)
- La formación del complejo sobre la superficie de la pirita favorece la oxidación del Cu superficial


"FLOTACIÓN DE MINERALES DE COBRE"

USO DE BISULFITO DE SODIO PARA DEPRESAR PIRITA ACTIVADA

Mejor condición: sulfito de sodio y aireación

(Khmeleva et al., 2002)

"FLOTACIÓN DE MINERALES DE COBRE"

FIN DE LA PRESENTACIÓN

"FLOTACIÓN DE MINERALES DE COBRE"

